A system that allows detection of thermal segregation in the asphalt mat, in real time, and records a thermal profile is now being used by some state Departments of Transportation. The reason is to eliminate inconsistent densities because freshly paved asphalt pavement doesn’t compact properly after becoming too cool, and the low temperatures contributed to these low densities.

proper-soil-compacUntitled-1There are many factors that influence the choice of compaction equipment selected for a project. Sometimes it is based on the contractor’s previous experience and other times by the type of soil, method specification or available equipment.
How well a machine will conform to the hauling and spreading operation are also considerations, and climatic and traction conditions are also important.
There is no single compactor that will do all things in all applications. Each type has a definite material and operating range on which it is most economical. In many cases, there are applications where machines of different sizes and types can achieve the compaction target; but choosing the machine that is most suitable will complete the work most economically and efficiently due to reduced passes, reduced fuel use and less working time.

Vibratory Compactors
Vibratory compactors work on the principle of particle rearrangement to decrease voids and increase density and load bearing strength. They come in two types: smooth drum and padfoot drum. For increased versatility, smooth drum compactors can be equipped with optional padfoot shell kits, which allows the use of smooth drum rollers in padfoot applications, albeit with limited performance.
Smooth drum vibratory compactors generate three compactive forces: static pressure, impact and vibration. Padfoot drum machines generate the same forces, plus they also generate manipulative force. Vibratory compactors provide uniform compaction throughout the lift.
Density is achieved from the forces generated by the vibrating drum hitting the ground. Compaction results are a function of the frequency and amplitude of the blows, as well as the force of the blows and the time period during which the blows are applied.
The frequency/time relationship accounts for slower working speeds on vibratory compactors. Working speed is important because it dictates how long a particular part of the fill will be compacted. For vibratory compactors, a speed of 1 to 2.5 km/h (0.6-1.6 mph) for rock and clay, and 2 to 5 km/h (1.2 to 3 mph) for gravel and sand will provide the best results.
Based on the principle of particle rearrangement to decrease voids and increase density, vibratory compactors come in either smooth or padfoot drums. (Read a companion piece that ran in the May 2014 issue, “Size Matters in Mix Grades and Aggregate Shapes,” at betterroads.com/size-matters-in-mix-grades.)
Smooth drum vibratory compactors https://aidomachinery.pk/vibratory-plate-compactor-for-sale-in-pakistan/ were the first vibratory machines introduced. They are most effective on granular materials with particle sizes ranging from large rocks to fine sand. They are also used on semi-cohesive soils with up to 50 percent cohesive soil content. Lift thicknesses vary according to the size of the compactor. Whenever large rock is used in the fill, the lifts may be very thick—up to 1.2-m (4-ft.) lifts are not unusual. One thing to remember when large rocks are in the fill is that the thickness should be about 300 mm (12 in.) more than the maximum rock size. This permits lift consolidation without having large rocks protrude above the surface.
Padfoot drum machines expand the material range to include soils with more than 50 percent cohesive material and a greater percentage of fines. When the pad penetrates the top of the lift, it breaks the natural bonds between the particles of cohesive soil and achieves better compaction results. The pads are involuted to walk out of the lift without fluffing the soil and tapered to help them stay clean. The typical lift thickness for padded drum units on cohesive soil is in the 150- to 460-mm (6- to 18-in.) range.

proper-soil-compacUntitled-1There are many factors that influence the choice of compaction equipment selected for a project. Sometimes it is based on the contractor’s previous experience and other times by the type of soil, method specification or available equipment.
How well a machine will conform to the hauling and spreading operation are also considerations, and climatic and traction conditions are also important.
There is no single compactor that will do all things in all applications. Each type has a definite material and operating range on which it is most economical. In many cases, there are applications where machines of different sizes and types can achieve the compaction target; but choosing the machine that is most suitable will complete the work most economically and efficiently due to reduced passes, reduced fuel use and less working time.

Vibratory Compactors
Vibratory compactors work on the principle of particle rearrangement to decrease voids and increase density and load bearing strength. They come in two types: smooth drum and padfoot drum. For increased versatility, smooth drum compactors can be equipped with optional padfoot shell kits, which allows the use of smooth drum rollers in padfoot applications, albeit with limited performance.
Smooth drum vibratory compactors generate three compactive forces: static pressure, impact and vibration. Padfoot drum machines generate the same forces, plus they also generate manipulative force. Vibratory compactors provide uniform compaction throughout the lift.
Density is achieved from the forces generated by the vibrating drum hitting the ground. Compaction results are a function of the frequency and amplitude of the blows, as well as the force of the blows and the time period during which the blows are applied.
The frequency/time relationship accounts for slower working speeds on vibratory compactors. Working speed is important because it dictates how long a particular part of the fill will be compacted. For vibratory compactors, a speed of 1 to 2.5 km/h (0.6-1.6 mph) for rock and clay, and 2 to 5 km/h (1.2 to 3 mph) for gravel and sand will provide the best results.
Based on the principle of particle rearrangement to decrease voids and increase density, vibratory compactors come in either smooth or padfoot drums. (Read a companion piece that ran in the May 2014 issue, “Size Matters in Mix Grades and Aggregate Shapes,” at betterroads.com/size-matters-in-mix-grades.)
Smooth drum vibratory compactors https://aidomachinery.pk/vibratory-plate-compactor-for-sale-in-pakistan/ were the first vibratory machines introduced. They are most effective on granular materials with particle sizes ranging from large rocks to fine sand. They are also used on semi-cohesive soils with up to 50 percent cohesive soil content. Lift thicknesses vary according to the size of the compactor. Whenever large rock is used in the fill, the lifts may be very thick—up to 1.2-m (4-ft.) lifts are not unusual. One thing to remember when large rocks are in the fill is that the thickness should be about 300 mm (12 in.) more than the maximum rock size. This permits lift consolidation without having large rocks protrude above the surface.
Padfoot drum machines expand the material range to include soils with more than 50 percent cohesive material and a greater percentage of fines. When the pad penetrates the top of the lift, it breaks the natural bonds between the particles of cohesive soil and achieves better compaction results. The pads are involuted to walk out of the lift without fluffing the soil and tapered to help them stay clean. The typical lift thickness for padded drum units on cohesive soil is in the 150- to 460-mm (6- to 18-in.) range.
Comments
Post a Comment